

Circular Economy SPIRE Opportunities for 2018-2019

> CITIES OF THE FUTURE 2017 Brussels 26-27th Oct 2017

> > **Cristina FERNANDEZ-RAMOS**

Unit D2. Advanced Manufacturing Systems and Biotechnologies Industrial Technologies Directorate DG Research and Innovation European Commission

The contractual PPP approach

• What is the same as in normal Horizon 2020:

- The financial rules are those of Horizon 2020
- Final responsibility for the Work Programme stays with the European Commission
- Implementation remains with the Commission: selection of proposals, grant preparation, review of progress and payments
- <u>Calls are open to non-members (~ 75% of funded participants are non-members)</u>

• What is different from normal Horizon 2020:

- Long-term commitment by Commission to support the field
- Long-term commitment by industry to invest, with a need to demonstrate its fulfilment (monitoring & KPIs)
- Roadmap-based strategy. Close interaction in the Partnership Board to prepare the content of the calls.

The SPIRE Research Roadmap

Commission

Structured around 6 Key Components, comprising Key Actions (KA):

• FEED (4)

Optimal valorisation of feedstock

• PROCESSES (5)

More efficient processing solutions

• APPLICATIONS (2)

New processes to produce materials for market applications

• WASTE2RESOURCES (4)

Management of waste streams

• HORIZONTAL (4)

Skills, tools, knowledge-sharing, best practices

• OUTREACH (2)

Reach out activities

- Discuss priorities
- Form consortia
- Apply to calls

- Discuss priorities
 & call topics
- Assess progress

- Develop work
 programme
- Publish open calls

Sustainable Process Industry through Resources and Energy Efficiency (SPIRE) cPPP

Rationale of the SPIRE cPPP

- Eight world-leading sectors (cement, ceramics, chemicals, engineering, minerals and ores, non-ferrous metals, steel and water)
- At the core of most industrial value chains
- Highly dependent on resources, interested in improved efficiency
- 20% of European industry (employment and turnover)
- Key part of the manufacturing base in Europe,
- > 450000 enterprises, 6.8 million employees

Specific Objectives of SPIRE

R+I to integrate and demonstrate at least 40 innovative systems and technologies:

- 7 in Adaptable processes able to use different feedstocks
- 6 in Reduction and re-use of waste with ambition to close the loop
- 9 in Innovative processes leading to CO₂ reduction
- 8 in Green technologies to develop novel materials for new and existing markets
- 6 in Industrial processes reducing water use
- 4 using Technology uptake within/between sectors to enable industrial symbiosis

... and capable of achieving across process industry (by 2030):

- A reduction in <u>fossil energy intensity of up to 30%</u>
- A reduction in non-renewable, primary <u>raw material</u> intensity of <u>up to 20%</u>
- Increase in <u>renewables</u>, <u>reduction and re-use of waste</u> (even cross-sectorial) with ambition to achieve a close loop
- Reduction of the <u>water footprint</u> of industrial processes
- Efficiency improvement of CO₂-equivalent footprints of <u>up to 40%</u>
- 10 new types of high-skilled jobs

Sustainable Process Industries through Resource and Energy Efficiency (SPIRE cPPP)

- Central objectives: optimise industrial processing, reduce energy and resource consumption and minimise waste through cross sectorial approaches → Significant contributions to the Circular Economy and to fighting climate change.
- SPIRE cPPP topics in Horizon 2020 (WP 2018-2019):
 - LEIT-NMBP (6 topics)
 - SC3 Secure, clean and efficient energy (3 topics, 1 with 2 subtopics)
 - SC5 Climate action, environment, resource efficiency and raw materials (2 topics)

SPIRE in Horizon 2020 WP 2018-2019 Overview of topics

Eu	Furopean	
	Laropean	

	Туре	TRL		
CE-SPIRE-02-2018	Processing of material feedstock using non-conventional energy sources	IA	4-6	
CE-SPIRE-03-2018	Energy and resource flexibility in highly energy intensive industries		5-7	
CE-SPIRE-10-2018	Efficient recycling processes for plastic containing materials		5-7	1BP
CE-SPIRE-04-2019	Efficient integrated downstream processes	IA	5-7	Z
CE-SPIRE-05-2019	Adaptation to variable feedstock through retrofitting	IA (50%)	5-7	
DT-SPIRE-06-2019	Digital technologies for improved performance in cognitive production plants	IA	5-7	
CE-SC3-NZE-02-2018	Conversion of captured CO2	RIA	3 or 4 - 5 or 6	
LC-SC3-RES-07-2019	Solar Energy in Industrial Processes	RIA	4-5	m
LC-SC3-EE-06-2018	Business cases for industrial waste heat/cold recovery (costbenefit models for industrial waste heat/cold recovery)	IA	4-8	SC
LC-SC3-EE-06-2019	Business cases for industrial waste heat/cold recovery (symbiosis in industrial parks and clusters-non-technological barriers)	CSA	-	
CE-SC5-01-2018	Methods to remove hazardous substances and contaminants from secondary raw materials	RIA	5-6	С С
CE-SC5-04-2019	Building a water-smart economy and society a) Symbiosis between industry and water utilities	IA	5-7	SC

Research and

SPIRE Topics 2018-2019 in NMBP

- CE-SPIRE-02-2018: Processing of material feedstock using non-conventional energy sources
- CE-SPIRE-03-2018: Energy and resource flexibility in highly energy intensive industries
- CE-SPIRE-04-2019: Efficient integrated downstream processes
- CE-SPIRE-05-2019: Adaptation to variable feedstock through retrofitting
- DT-SPIRE-06-2019: Digital technologies for improved performance in cognitive production plants
- CE-SPIRE-10-2018: Efficient recycling processes for plastic containing materials_

SPIRE in NMBP WP 2018-20 Call – INDUSTRIAL SUSTAINABILITY

• Goal

- To further strengthen the global leadership of Europe's industry in environmental sustainability.
- EU Climate and Energy targets by 2030: GHG reduction by 40% ; renewables share 27% ; energy efficiency 30%
- Contributes to the Sustainable Development Goals.

• Covers

- SPIRE and catalysing the Circular Economy
- Clean energy through innovative materials
- > Cultural Heritage
- Energy-Efficient Buildings

CE-SPIRE-02-2018: Processing of material feedstock using non-conventional energy sources

- Challenge: Develop efficient processes utilising non-conventional energy sources, which are compatible with a renewable energy grid.
- Scope:
 - Develop more Energy and Resource efficient process intensification technologies, which utilise non-conventional energy sources
 - Flexible technologies able to cope with fluctuating energy fluxes
 - Focus on continuous processes, possibility to enable batch to continuous process transition
 - Containerisation might be considered
 - Scalability and replicability should be considered, LCA
- Impact:
 - Energy and resource efficiency improvement of 30%
 - CO₂ emissions decrease of 40% (without considering the electricity generation and at steady state)
 - Decreased OPEX and CAPEX by 15%
 - Allowing for a -30% to +30% energy input within RES fluctuations timeframes, without significant losses in specific energy efficiency

EUR from 6 to 10 millions

CE-SPIRE-03-2018: Energy and resource flexibility in highly energy intensive industries

- Challenge: Adapt highly energy intensive industries operations to fluctuating energy supply, optimising energy streams, heat recovery and raw materials flows. Regional dimension.
- Scope:
 - Technologies allowing flexibility for raw materials. Consider quality of the main products and by-products for valorisation
 - Reduction, valorisation, re-use and recycling of by-products and waste streams (solid, liquids and gaseous)
 - System, process modelling and integration (up and down-stream) improving energy and raw materials efficiency and flexibility, and minimising the impact on the environment
- Impact:
 - Cost reduction of the process of at least 10%
 - Improved process efficiency by at least 15% (re-utilisation of energy and/or material process streams)
 - CO2 emissions reduction by at least 5% and reduction of the environmental impact by at least 15% in terms of the

main key performance indicators

EUR from 8-12 millions

CE-SPIRE-10-2018: Efficient recycling processes for plastic containing materials

- Challenge: The wide use of plastics generates a huge amount of plastic waste. Advanced recycling processes are essential to use this huge amount of heterogeneous material for the production of added value products and process streams.
- Scope:
 - **Processes for the production of recyclable materials containing plastics**
 - Integration with the relevant value chains. Meaning securing the supply of raw material streams and the involvement of the relevant actors
 - Flexibility in the utilisation of heterogeneous plastic waste, potentially use of biobased materials and best valorisation of all components (e.g. fillers or fibres from composites)
- Impact:
 - Processing technologies utilising plastic waste as starting material for the production of added value products and chemicals (excluding fuels)
 - Decreased utilisation of primary fossil resources of at least 30% and $\rm CO_2$ emission of 20%
 - The concept should utilise at least 70% of waste material including at least 40% of plastic waste

EUR from 6 to 8 millions

CE-SPIRE-04-2019: Efficient integrated downstream processes

- Challenge: The development of novel technologies for upstream and downstream unit operations, as well as their better integration, to minimise inefficiencies and lead to resource and energy efficiency gains
- Scope:
 - Intensified process technologies presenting multistep upstream processes, as well as process analytical techniques (PAT)
 - Complex downstream operations, integrating different separation techniques and purification steps
 - Modularity and flexibility of the solutions, as well as, potential for transition from batch to continuous operations
 - Increased productivity, purity and quality of products
 - Integration, replicability in different sectors, safety
- Impact:
 - 20% decrease in greenhouse gas emission
 - Increased in resource and energy efficiency by at least 20%
 - Novel modular and scalable integrated (upstream-downstream) pilot line technologies with 10% decrease in CAPEX and OPEX

EUR from 10 to 14 millions

CE-SPIRE-05-2019: Adaptation to variable feedstock through retrofitting

- Challenge: Keep long lifetime industrial facilities and equipment up to date from a technological and regulatory point of view.
- Scope:
 - Simulation models and decision support tools for the production chain, including the detection of inefficiencies, to allow flexibility in terms of feedstock of variable composition
 - Tools and methodologies to streamline and support retrofitting
 - Optimal operating input conditions, indicators for their modification and replication
 - Adapt the equipment towards a larger number and more diverse feedstock
- Impact:
 - Increase resource and energy efficiency by at least 20%
 - Decrease GHG emissions by at least 30%
 - Decreased utilisation of fossil resources of at least 20%
 - Reduced OPEX by 30% and increased productivity by 20%
 - Effective dissemination through the development, by education/training experts, of learning resources with flexible usability FIIR from 8 to 12

EUR from 8 to 12 millions

DT-SPIRE-06-2019: Digital technologies for improved performance in cognitive production plants

- Challenge: Digitising the process industry to enable the autonomous operation of the system based on embedded cognitive reasoning
- Scope:
 - Online monitoring and innovative control technologies (process performance, flexibility, maintenance needs, product quality)
 - Digital retrofitting of existing assets, holistic optimisation of operations, dataanalytics, real-time capability, use role-specific representation of
 - Other concepts: apply low-cost sensors for on-line assessment of product quality and integration into process control; robust optimisation methods to distributed targeted process monitoring; simulation methods for the analysis, characterisation and study of systems for enhanced operations and decisionmaking combination of various forms of data with cognitive insight to optimise and enhance resources
- Impact:
 - Reduce CO₂ emissions (state-of-the-art)
 - Increase production performance by 20%

EUR from 6 to 8 millions

Deadlines 2018–2019/Indicative Budgets

Торіс	Budget 2018 (M€)	Budget 2019 (M€)	Deadlines
CE-SPIRE-02-2018 CE-SPIRE-03-2018 CE-SPIRE-10-2018	Total: 97.5		31 Oct.17- 22 Feb. 2018
CE-SPIRE-04-2019 CE-SPIRE-05-2019		Total: 65.8	16 Oct.18- 21 Feb. 2019
DT-SPIRE-06-2019		32.9	16 Oct.18- 21 Feb. 2019

SPIRE NMBP topics are evaluated in single stage (full proposals to be submitted)

SPIRE Topics in SC3 & SC5, 2018-2019

- *CE-SC3-NZE-02-2018:Conversion of captured CO*₂
- LC-SC3-RES-07-2019:Solar Energy in Industrial Processes
- LC-SC3-EE-06-2018: Business cases for industrial waste heat/ cold recovery (Cost-benefit models for industrial waste heat/cold recovery)
- LC-SC3-EE-06-2019: Business cases for industrial waste heat/ cold recovery (Symbiosis in industrial parks and clusters – non-technological barriers)
- CF-SC5-01-2018: Methods to remove hazardous substances and contaminants from secondary raw materials
- CE-SC5-04-2019:Building a water-smart economy and society a) Symbiosis between industry and water utilities

LC-SC3-EE-6-2018: Business cases for industrial waste heat/cold recovery

Cost-benefit models for industrial waste heat/cold recovery

Challenge: Build business case for waste heat/ cold as a valuable resource for other industries and buildings/ District Heating and Cooling operators

Scope:

- Integrated <u>cost-benefit simulation tools</u> for financially viable solutions at recovering energy (waste heat or renewable surplus) in industrial sites/parks
- <u>Flexible tools</u> for different types of sites
- <u>Characterization of processes and waste streams, barriers and opportunities</u> (on the DHC side) and other variables (e.g., technology, infrastructure, administrative and legal costs, energy prices, demand)

Expected impacts:

- Holistic modelling of industrial waste heat/cold and/or surplus renewable energy from industrial or other sources
- Impact of various factors/variables on the cost-benefits
- Number of industrial sectors/sites/parks, public authorities, large private facilities and DHC operators with increased capacity
- Primary energy savings (GWh/year), investments in sustainable energy (million Euro) triggered, reduction of the emissions of CO2 (tCO2eq/year) and/or air pollutants (kg/year)

EUR from *3 to 4 millions*

nmission

TRL from 4 to 8

LC-SC3-EE-6-2019: Business cases for industrial waste heat/cold recovery

Symbiosis in industrial parks and clusters – non-technological barriers

Challenge: Improve energy efficiency of industrial parks districts and clusters by unlocking market potential and supporting demand and offer of high-quality energy services

Scope:

- Address legal issues in order to adapt regulatory and legal frameworks
- Take into account sustainability in time of the proposed symbiosis
- Ensure applicability of solutions to other industrial parks/business sectors

Expected impact:

- Primary energy savings triggered (GWh/year)
- Investments in sustainable energy triggered (million Euro)
- Number of plant sites (within one industrial park) and number of industrial parks committed to energy cooperation
- Number of relevant stakeholders aware of and/or interested in implementing joint energy services
- Number of policies and legal frameworks created and/or adapted to facilitate energy cooperation

TRL

trom

4 to 8

EUR from 1 to 2 millions

Commission

Deadlines 2018–2019 / Indicative Budgets

Торіс	Budget 2018 (M€)	Budget 2019 (M€)	Deadlines
CE-SC3-NZE-2-2018	12.0		15 May - 06 Sept 2018
LC-SC3-RES-7-2019		10.0	07 May -27 Aug 2019
LC-SC3-EE-6-2018	9.0		25 Jan - 04 Sept 2018
LC-SC3-EE-6-2019		10.0	24 Jan - 03 Sept 2019
CE-SC5-01-2018*	34.0		1 st stage 27 Feb 2018 2 nd stage 04 Sept 2018
CE-SC5-04-2019**		72.0	1 st stage 19 Feb 2019 2 nd stage 04 Sept 2019

* Call opens: 7 Nov 2017 ** Call opens: 14 Nov 2017

European Commission

HORIZON 2020 Thank you for your attention

Pre-published Work programme:

<u>https://ec.europa.eu/programmes/horizon2020/sites/horizon2020/files/</u> <u>h2020-leit-nmbp-2018-2020_pre-publ.pdf</u>

HORIZON 2020:

http://ec.europa.eu/research/participants/portal/desktop/en/home.html

Industrial technologies Research and Innovation: http://ec.europa.eu/research/industrial_technologies/index_en.cfm

HORIZON 2020