
AVL and ECSEL - Introduction on AVL and Automated Driving

Visit of ECSEL Meeting Istanbul Februar 18th, 2020

Juergen Holzinger

About Us

AVL is the world's largest independent company for development, simulation and testing technology of powertrains (hybrid, combustion engines, transmission, electric drive, batteries and software) for passenger cars, trucks and large engines.

The headquarter of AVL is in Graz, Austria.

EXPERIENCE >70 years!

5 powertrain elements

RESEARCH 10% of turnover in-house R&D

INNOVATION 1,500 granted patents

STAFF **11,000** employees **65%** engineers and scientists

GLOBAL FOOTPRINT

30 engineering locations

- >220 testbeds
- Global customer support network

Customer Challenges and AVL Business Areas

MASTERING SPEED & COMPLEXITY

AFFORDABLE AND LEGISLATION COMPLIANT VEHICLES

Combustion Engine Vehicle

Hybrid Electric Vehicle

Battery Electric Vehicle

Fuel Cell Electric Vehicle

MOBILITY TRENDS

Autonomous Driving (ADAS,AD)

Shared and Connected Mobility

Green and Sustainable Technologies

Testing and Instrumentation

Advanced Simulation Technologies

Engineering Technology Provider

A STRATEGIC GLOBAL PARTNER

ECSEL JU

CEO MESSAGE

H

GLOBAL

EXECUTION &

SUPPORT

MISSION & **VISION**

PROPULSION & INTEGRATION IN VEHICLE

AUTOMATED DRIVING & MOBILITY

INTEGRATED & OPEN DEVELOPMENT PLATFORM

CESAR

PRODUCTION ORIENTATION

Safe Cer

CUSTOMER ORIENTATION & EFFICIENCY

Juergen Holzinger | TG | 16 Februar 2020 | 5

ECSEL Project Clusters are significant for AVL's success

Syst. Eng., Interoperability & Dependability

€50/82M budget 55/68 partners 9/10 countries

2013 - 2021

Industry 4.0

Participation in 6 ECSEL projects

2015 - 20xx

Automated Driving

€68M budget 70 partners

2015 -2021

Electrification

HIPERFRM

€41M budget 31 partners

8 countries

High Efficient and Performant EV

Highly Automated & Connected Safe Vehicles

Development for Efficient Production

Automated, Connected, Electrical Vehicles

- High Efficiency
- Zero Emission
- Zero
 Fatalities

Cost-Efficient Methods and Processes for Safety & Security Relevant Embedded Systems

AVL project coordinator

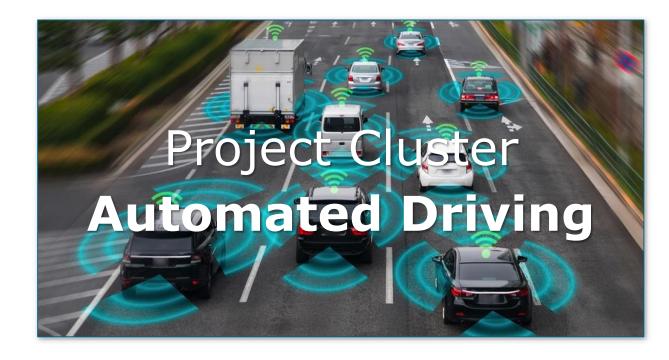
Other ECSEL projects with AVL

Other H2020 projects with AVL

New technology fields

- New architectures & artificial intelligence (GPU, edge, cloud RT)
- Radar / Lidar sensors, cameras & image processing, aging, sensor simulation
- Human monitoring & transition scenarios

New validation methods


- New V&V types & perimeters (scenario & context-based, V2X, OTA, cloud)
- V&V of adaptive embedded systems, AI generated controls, cyber-security

New customer segment

- Link to shared & connected mobility
- Involve new players in collaborative research (faster, more agile projects)

ENABLE-S3 International Project Consortium

68 Partners

70 M€ budget

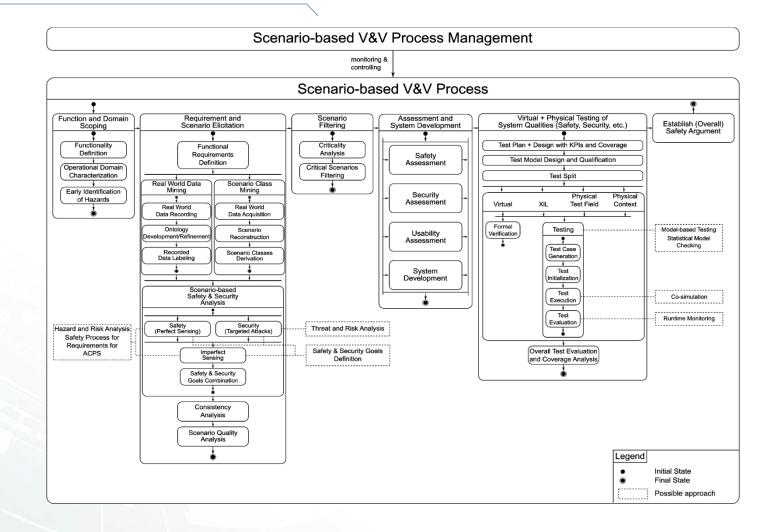
16 Countries

6 Domains

12 Use Cases

Industry & academia

How to avoid this? and achieve that?


Generic Test Architecture

Methodology of ENABLE-S3

Methodology results of ENABLE-S3

ome About V8

Scenario-based V&V methodology

Methodology takes a holistic approach from the initial understanding of the operational context until the final safety and security argument.

Scenario-based V&V methodology is generic

Methodology subsumes best-practices collected in 6 different application domains.

Scenario-based V&V provides basis for the technical developments in the project

It also is the "glue" between other key outcomes

The V&V-Patterns

Pattern Name	Purpose
Test Plan Specification	using a generic template based on ISO/
Scenario-based V&V Process	Whole process from operational scenar scenario design to verification
Requirement and Scenario Elicitation	Combined elicitation of requirements a
Abstract Scenario Mining	Mining of abstract scenarios covering tl
Abstract Scenario DB Design	Creation of a set of abstract scenarios a
Scenario Representativeness Checking	Quantification how well a set of abstrac
Scenario-based Safety & Security Analysis	Refinement of functional requirements abstract scenario
<u>Derive Safety Requirements for Autonomous</u> <u>Driving</u>	Scenario- and fault-tree-based pattern
Formalized Verification and Analyis	Verify that the design of a system or pris indeed dependable
KPI-Model based Validation	Apply Design-of-Experience based behave needed to validate a SuT
KPI-Catalogue Definition	Identification of (application specific) Ke
Closed-Loop Testing	Validate the SUT (System under Test) in
MiL (Model in the Loop)	Testing a model of the SUT in a simulat
SiL (Software in the Loop)	Testing the SUT software in a simulated closed-loop setting
HiL (Hardware in the Loop)	Testing the target SUT (hard- and softw assessing its correct operation in a clos
Co-Simulation Based V&V	Construction and execution of a co-sim
Semi-virtual Testing	Estimation of the risk that a given SuT v
Statistical Model-Checking based Validation	Application of statistical model checkin
Recorded Data Labeling	Generation of Ground Truth Data relate

Confidential Juergen Holzinger | TG | 16 Februar 2020 | 12

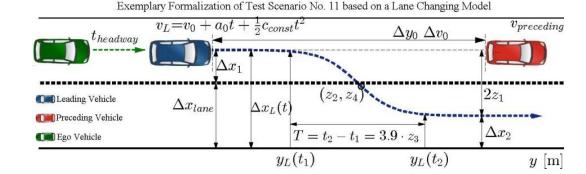
Key Result: Scenario Detection

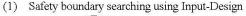
Systematic overview

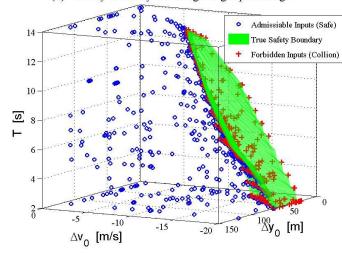
of available (scenario) data sets

Shared language & approach

for scenarios in safety validation

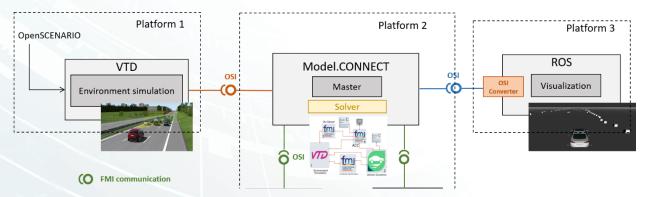

Scenario detection algorithms

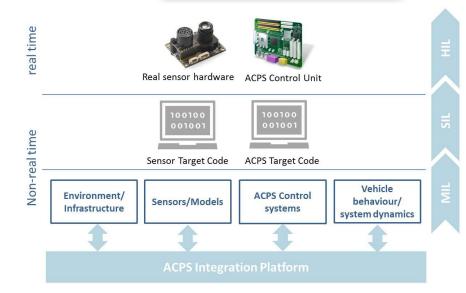

for activity or manoeuvre detection


Algorithms

for critical case identification, test case generation and OpenDRIVE®/ OpenSCENARIO® generation

Tool integration





Key Results: Simulation Platform

- Integrated function simulation and environment simulation.
- Made real-time co-simulation happen.
- Verification via distributed co-simulation.
- Aligned methods between different domains.
- Helped establishing standards for simulation-based testing of highly automated systems.

Key Results: Sensors & Stimuli

Developed **generic interface definitions** for the different **sensor models**.

Developed **perception sensor simulation** for different types of sensor systems, e.g., radar and lidar.

Developed approaches for perception **sensor stimulation**, e.g., mixed reality lidar, radar stimulator, for different types of sensors.

Developed solutions for **communication channel simulation**, e.g., wireless communication simulation, V2X channel emulator.

