TRANSCAN-3 JTC2021 International Networking Event

Bu proje Avrupa Birliği ve Türkiye Cumhuriyeti tarafından finanse edilmektedir

Ricardo Neves Centre for Neuroscience and Cell Biology, Coimbra, Portugal Ricardo.neves@uc-biotech.pt

Description of the Organization

non-profit private research institution, has a long-standing record of scientific excellence and internationalization

strategic partnerships with the Coimbra University Hospitals and the BIOCANT biotechnology park

funded by: European Commission; Progeira Foundation; Michael J.Fox Foundation; National Ataxia Foundation; European Foundation for the study of Diabetes; La Caixa Foundation; Lejeune Foundation; National Institutes of Health; U.S. Department of Defense; Medical Research Council; Bayer; Novartis; Merck and others...

Description of your research interest

The biomaterials and stem cell-based therapeutics was created in January 2008 at CNC.

Nanomedicine and Cell Therapy

Gomes et al., ACSnano. 2013

Boto et al., 2017 Nature Communications Gouveia et al., 2017 Biomaterials

Related funding: ERA@UC H2020 WIDESPREAD2014; NANOSTEM (CPU0298A01#IV0298); Nano_Brain 842405 (CPU0298A02#IV0298); CANCEL STEM (CPF0007006#IV0298)

Description of your research interest

Reprogramming "niches"

How can we do better?

Activation of RA+NPs at the niche can help to reduce the disease burden *in vivo*

Macrophage-like cells intra-vital microscopy

LEUKEMIA CLEARENCE

Differentiated Macrophage

Project Idea

Relevant JTC2021 aim and sub aims

Aim 1: Identification and validation of tumour microenvironment (TME) subclasses and their contribution to the resistance mechanisms Objectives: Definition of the contribution of TME to resistance mechanisms and identification of new therapeutic targets through multiomics (epigenomic, transcriptomic, proteomic, metabolomics) to assess functional characteristics of TME-tumour cell interplay within the primary tumour and/or metastases (e.g the underlying signaling, the transcriptional landscape, the cell-cell communication, the network regulation of immune cells, etc.), to identify candidate TME targets and to assess the activity of pathway-targeting agents.

- Expected results
 - Identification of new molecules for tackling resistance in TME
 - Development of new nanoformulations for immunotherapy application

Project Idea

Relevant JTC2021 aim and sub aims

Aim 2: Targeting TME to improve efficacy of immunotherapy in human patients. Objectives: Development of new precision therapeutic strategies that may prevent human tumour recurrence or resistance (T-cell-based cancer immunotherapies, immune checkpoint blockers (ICBs), chimeric antigen receptor (CAR)-T-cells, preventive and therapeutic vaccines, etc.).

- Expected results
 - Development of new co-adjuvant retinoic acid nanoformulations for CAR-T and NK-cell immunotherapy improvements in acute myeloid leukemia.

Νο	Expertise	Туре	Country	Role in the project
01	Single Cell Omics	RTD		
02	Immunology CAR-T cells; NK- Cells	RTD		
03	GMP HSC- transplant	INFRA		
04				
05				

06

Ricardo Neves CNC-BC UC-Biotech Portugal +351 231 249 170 Ricardo.neves@uc-biotech.pt

