

Miriam de Angelis

Horizon 2020 National Contact Point for 'Smart green and integrated transport' & 'Clean Sky 2' Agenzia per la Promozione della Ricerca Europea (APRE)

Clean Sky 2: developing new generations of greener aircraft

- Clean Sky is a Joint Technology Initiative (JTI), a public-private partnership between Europe's aeronautics industrial leaders, public research organisations, and the European Commission.
- It develops and demonstrates **break-through technologies for the civil aircraft market** to cut aircraft emissions and noise, and secure the future international competitiveness of the European aviation industry.
- CS2 JTI runs from 2014 to 2024.
- Clean Sky 2 stems from Clean Sky launched in 2008.

How is it run?

- CS2 JTI is managed by a Joint Undertaking whose Governing Board comprises representatives of the European Commission and Aeronautics Industry.
- 40% of the funds is earmarked for the **founding members** of CS2 who lead the technical programme and commit for the whole duration.
- 30% of the funds is allocated to **core partners**, selected through open calls at the start of the programme, which then became full Members of the Joint Undertaking.
- The remaining 30% of funding will be distributed in **annual open calls** to support the specific tasks.

Members of the CS2 Joint Undertaking

CS2 Objectives

- New environmentally friendly technologies for next generation Aviation:
 - increasing aircraft fuel efficiency, thus reducing CO2 emissions by between 20 to 30%; and
 - reducing aircraft NOx and noise emissions by between 20 to 30% compared to "state-of-the-art" aircraft.
- Speeding up development of technology demonstrators;
- Underpinning European international aviation competitiveness;

CS2 Budget

- CS2 budget is **€4 billion**:
 - The EU contributes ~€1.8 billion from the Horizon 2020 programme budget.
 - Industrial partners contribute ~€2.2 billion.

Clean Sky participation

Support on Your De

Sky Organisation Clean

APF Agenzia per la Pro della Ricerca E Clean Sky – (2008-2016) – 1.6 billion (800 mil from FP7, industry in kind) Clean Sky 2 – (2014-2024) - 4 billion (1755 mil from H2020, industry in kind)

Clean Sky Overview

Clean Sky aims environmental improvement through developing and demonstrating clean aircraft technologies

	Clean Sky 1	Clean Sky 2
N° of Demonstrators	28	37
EU funding in € million	800 (from FP7)	1 755 (from Horizon 2020)
	50% for actions of the Leaders	40% for actions of the Leaders
	25% for actions of the Associates	30% for actions of the Core Partners
	25% for actions for Partners	30% for actions for Partners
Private contribution in € million	600	2 193
	50% rate	

The Call for Proposals (CfP)

Topics

Background documentation

Joint Technology Programme:

CS2 High Level Objectives

All documents made

Type of topics

a. Complementary Topics

- CS2JU specificity
- Topics launched <u>inside</u> the complementary framework of one IADP/ITD/TA
- Directly linked to the action implemented by the Clean Sky 2 Members under grant agreements for members
- They contribute to the achievement of the results of specific ITD/IADP/TA.

b. Thematic Topics

- Topics launched <u>outside</u> the complementary framework of one IADP/ITD/TA
- Not directly linked to the action implemented by the Clean Sky 2 Members under specific ITD/IADP/TA
- They contribute to the achievement of the High Level Objectives (HLGs) of the Clean Sky 2 Regulation
- Different special conditions of admissibility apply to the thematic topics

The Topic description

23/05/19

The topic description

Type of action (RIA/IA/CSA):		IA				
Programme Area:		LPA				
(CS2 JTP 2015) WP Ref.:		WP 1.1				
Indicative Funding Topic Val	ue (in k€):	600				
Topic Leader:	Airbus	Type of Agreement:	Implementation Agreement			
Duration of the action (in	36	Indicative Start Date (at	> Q1 2020			
Months):		the earliest) ⁶ :				

Topic Identification Code	Title						
JTI-CS2-2019-CfP10-LPA-01-72	Development of a distributed CFD platform for collaborative design						
Short description							
Development of an open-source CFD simulation platform and methodology to enable co-design							
between an airframe manufacturer and an engine manufacturer, while maintaining IP and IT security.							
This includes code-to-code coupling, communication between different simulation platforms, post							
processing of the simulation, and	demonstration on industrial configuration.						

	Links to the Clean Sky	2 Programme High-le	evel Obje	ctives ⁷						
	This topic is located in	the demonstration a	area:	Advanced Engine/Airframe Architectures						
	The outcome of the p	roject will mainly co	ntribute	Advanced Long-range						
	to the following conceptual aircraft/air transport				inced Long-range					
	type as presented in the scene setter:			Advanced Short/Medium-range						
				Ultra-adva	nced Short/Medium	-range				
	With expected impacts	s related to the Prog	ramme hi	igh-level ob	jectives:					
	Reducing CO ₂	Reducing NO _x	Reducing Noise		ing Noise Improving EU Improving					
Г	emissions	emissions	emi	ssions	ons Competitiveness Mobility					
	\boxtimes			\boxtimes						

Type of action:

- Research and Innovation Action (RIA)
- Innovation Action (IA)

Programme area:

- Large Passenger Aircraft IADP (LPA)
- Regional IADP (REG)
- Fast Rotorcraft IADP (FRC)
- Airframe ITD (AIR)
- Engines ITD (ENG)
- Systems ITD (SYS)
- Thematic topics (THT)
- Indicative funding topic value:
 - ~1m€
- Topic Leader
- Duration of the action
- Links to the Clean Sky 2 Programme Highlevel Objectives (from the Joint Technology

Programme)

Type of actions in CS2

RESEARCH AND INNOVATION ACTION (RIA)

Activities aiming to establish new knowledge and/or to explore the feasibility of a new or improved technology, product, process, service or solution. For this purpose they may include **basic and applied research**, **technology development and integration**, **testing and validation** <u>on a small-scale prototype in a laboratory or simulated environment</u>.

Projects may contain closely connected but limited demonstration or pilot activities aiming to show technical feasibility in a near to operational environment.

Reimbursed up to 100% of eligible costs

INNOVATION ACTION (IA)

Activities like prototyping, testing, demonstrating, piloting, large-scale product validation and market replication.

Reimbursement of the 70% (except for non-profit legal entities, where a rate of 100% applies) of eligible costs

(Fonte: the **General Annexes to the Work Programme 2018-20**: <u>http://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2018-2020/annexes/h2020-wp1820-annex-ga_en.pdf</u>)

The topic leader

Funding topic value

NO CEILING!

- The topic funding value is an estimate made by the topic manager who has written the topic.
- The applicants must fully address the scope of the topic and shall give both **requested funding** and **total eligible costs**, which will be evaluated in terms of 'Adequacy and efficiency of the allocation of the resources'.
- The funding topic value is not mandatory. -> no ceiling shall be applied to the requested funding.
- In case of exceedance, the applicant mst justify its choice.

It is now a common knowledge that the commercial aircraft industry is putting a lot of efforts toward the reduction of aircraft fuel burn and pollutant emissions. The research that is conducted in this regard is of particular importance to respect environmental constraints and to keep producing competitive airplanes.

As a matter of fact, the average commercial aircraft fuel efficiency has approximately doubled between 1960 and 2010. This can be explained by a number of factors, among which improved aircraft aerodynamics at transonic Mach numbers, improved materials, and better engines. Although further progress may be achieved both in terms of external aerodynamics (laminar wings / fuselage, riblets) or in terms of systems and structure (electric deicing, composite materials), large improvements will be obtained by working on the powerplant and its integration to the aircraft.

For instance, an engine with a lower Fan Pressure Ratio (FPR), and higher mass flow rate is more efficient and allows to decrease noise emissions, but that also involves larger fan diameters. This explains the current efforts to increase thebypass ratio (BPR) of civil aircraft engines, hence the « Ultra High Bypass Ratio » (UHBR)denomination for future turbofan engines. However, a larger fan diameter also results in a larger casing, which leads to increased nacelle weight and drag penalties.

To take advantage of the future generation of turbofan engines, innovative nacelle designs must thus be examined. For instance, one possibility is to consider shorter and thinner inlet lips. However, this approach leads to increased aerodynamic interactions between the air intake and the fan, which is no longer shielded from the external flow. To ensure a proper operation of both fan and air intake in the whole flight envelope of the aircraft these interactions must be mastered early in the design process of both components. On the long term, new propulsion paradigms must be envisioned to further decrease fuel burn. For instance, the Boundary Layer Ingestion (BLI) concept consists in embedding the engines and the airframe together so that the engines ingest a portion of the aircraft and the engines are fully coupled, as the fans operate under distorted inflow, and as the pressure distributions on the airframe are affected by the fans. Designing such an aircraft requires a characterization of these interactions, and numerical capabilities that capture the effect of each component on the others.

From the numerical standpoint, it is possible to capture fan-airframe interactions with high fidelity CFD simulations in which both fan and airframe are represented. However, fan and airframe design involve different sets of skills, so that fan geometries are usually not available to institutions or companies designing airframes, and reciprocally airframes are not available to institutions or companies designing fans. It is thus required to develop numerical capabilities that allow producing such a simulation, while preserving intellectual property and IT security across different entities.

2. <u>Scope of work</u>

The objective of the work is to develop and to setup an open-source collaborative co-simulation platform that could be used by both academia and industry to simulate separate aircraft components (such as a fan and an airframe) designed by separate entities, in a unique CFD simulation, while ensuring that intellectual property is protected. This involves code-to-code coupling, communication between two private networks, and post processing of the simulation.

Tasks		
Ref. No.	Title – Description	Due Date
WP1	Code-to-Code coupling for co-simulation in a single organization	M0+18
WP1.1	Coupling between two instances of a CFD solver (solver A)	
WP1.2	Coupling between CFD solver A and another CFD solver (solver B)	
WP1.3	Coupling between solver A or solver B and a CFD solver used in production	
	at Airbus different from solvers A and B	
WP2	Aerodynamic and Aeroacoustic post processing solutions for the analysis	M0+24
	of the result of the cosimulation	
WP2.1	Effect of the powerplant on the airframe	
WP2.2	Effect of the airframe on the powerplant installation	
WP2.3	Extension to co-processing	
WP3	Demonstration of the co-simulation platform on an industrial	M0+36
	configuration in multiple organizations	
WP 3.1	Generic preliminary works	
WP 3.2	Faisibility Demonstration	
WP 3.3	User interface	
WP 3.4	Application to industrial configuration and design trade-study	

WP1 – Code-to-Code coupling for co-simulation in a single organization

The objective of this workpackage is to demonstrate the code-to-code coupling approach on a configuration representative of an industrial application, but without the constraint linked to working on separate networks (IT and IP management). The coupling shall be demonstrated on a 3D nacelle + fan configuration with a mesh discretization comparing to the one used in production by Airbus. The coupling shall work in fully parallelized mode. Finally, the interfaces between engine and airframe must be completely conservative, i.e. mass flow rate, momentum and energy losses < 0.1%.

Key competences: Advanced computational fluid dynamics, numerical methods, code to code coupling. WP1.1 : Coupling between instances of the same CFD solver (solver A)

This activity will consist in demonstrating the possibility of coupling two separate instances of a given CFD solver (used in aeronautics for resarch activities). The coupling will be realized via a dedicated boundary condition that will allow an easy interfacing of those two instances.

WP1.2 : Coupling between CFD solver A and another CFD solver (solver B)

This activity will consist in extending the capability developed in WP1.1 to set-up a coupling between two different solvers. The solvers should be of different type (used for instance by different institutions) to demonstrate the genericity of the coupling platform.

WP1.3 : Coupling between solver A or solver B and a CFD solver used in production at Airbus different from solvers A and B

This second activity will focus on demonstrating the adequacy of the coupling platform by coupling either solver A or B with a solver used in production at Airbus. This is a requirement to demonstrate the viability of the solution in WP3.

WP2 – Aerodynamic and Aeroacoustic post processing solutions for the analysis of the result of the cosimulation

The objective of this workpackage is to develop post processing solutions adapted to the analysis of the advanced fan-airframe simulations realized thanks to the code-to-code coupling. These solutions must adress both aerodynamic and aeroacoustic requirements.

Key competences: Turbomachinery simulation, aircraft simulation, aero-acoustics, post processing

- Background
- Scope of work
- Tasks

enterprise europe network 19

Eastness Support on Your Doorster

15

Schedule

WP1

Code-to-Code coupling for co-simulati

WP1.1 Coupling between two instances of a C

									**	*	**	T
nd schedule (estimate)												
		Ye	ar1			Ye	ar2			Ye	ar3	
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
ion in a single organization												
CFD solver (solver A)												
nother CFD solver (solver B)												
3 and a CFD solver used in production d B)												

WP1.2	Coupling between CFD solver A and another CFD solver (solver B)						
WP1.3	Coupling between solver A or solver B and a CFD solver used in production at Airbus (different from solvers A and B)						
WP2	Aerodynamic and Aeroacoustic post processing solutions for the analysis of the result of the cosimulation						
WP2.1	Effect of the powerplant on the airframe						
WP2.2	Effect of the airframe on the powerplant installation						
WP2.3	Extension to co-processing						
WP3	Demonstration of the co-simulation platform on an industrial configuration in multiple organizations						
WP3.1	Generic preliminary works						
WP3.2	Feasibility Demonstration						
WP3.3	User interface						
WP3.4	Application to industrial configuration and design trade-study						

Deliverabl	Deliverables							
Ref. No.	Title - Description	Type*	Due Date					
D1.1	Coupling Two instances of CFD solver (solver A)	Software Doc/Demo	M0+6					
D1.2	Coupling Solver A with another CFD solver (solver B)	Software Doc/Demo	M0+12					
D1.3	Coupling solver A or Solver B with CFD solver used in Airbus (different of solvers A and B)	Software Doc/Demo	M0+18					
D2.1	Effect of the powerplant on the airframe	Software Doc/Data	M0+21					
D2.2	Effect of the airframe on the powerplant inst.	Software Doc/Data	M0+21					
D2.3	Extension to co-processing	Software Doc/Data	M0+24					
D3.1	Generic preliminary works	Software Report	M0+24					
D3.2	Feasibility Demonstration	Demo	M0+30					
D3.3	User interface	Software Doc/Demo	M0+36					
D3.4	Application to industrial configuration and design trade-study	Demo	M0+36					

Milestones (when appropriate)						
Ref. No.	Title - Description	Type*	Due Date			
M1	Review of detailed work plan for all tasks (Kick off)	Meeting	M0			
M2	First Coupling activities and post-processing prototype	Demo	M0+12			
M3	Coupling and post-processing demonstration	Demo Data	M0+24			
M4	Final integration of the full environment Application to industrial configuration review	Meeting Demo	M0+36			

4. Special skills, Capabilities, Certification expected from the Applicant(s)

17

Demonstrated capabilities in:

- -Code-to-Code coupling
- Networks & IT
- Advanced high fidelity computational aerodynamic modelling for turbomachinery and aircraft simulations
- Advanced aerodynamic and aero-acoustic post processing
- Fan design and / or aircraft design
- Understanding of fan-airframe interactions -

All the capabilities developed in the frame of this project should be generic enough to be readily usable by any entity and as such they should be compatible with Airbus environment, as Airbus will participate to the validation of the platform in WP 3.X

5. Abbreviations

IT

- CFD **Computational Fluid Dynamics** IP
 - Intellectual Property
 - Information and Technology
- HPC **High Performance Computing**

Special skills, • capabilities, certification expected frm the applicant(s)

20

18

The topic description

- The scope and perimeter of activities is defined from the beginning and might be of various type (study, design, simulation, development, manufacturing, integration etc.);
- The activities are limited in time and closely related to the needs as proposed by IADP/ITD Steering Committees and approved by the CS2JU;
- The activity is defined and will be technically lead by the Topic Manager following the technical roadmap/goals of the ITD/IADP.

Rules for participation

23/05/19

22

Eligibility conditions

Applicants must include a minimum of one legal entity established in an EU member state or a country which is an associated of the Horizon 2020 programme.

Complementary topics: admissibility conditions

 The 16 CS2JU Leaders and their affiliated entities under H2020 definition may apply to Calls for Proposals only in another IADP/ITD/TA where they are not involved as Members.

Status of affiliation + conflict of interest to be declared when applying

 The <u>Core partners and their affiliates entities</u> may apply to calls for proposals only in another IADP/ITD/TA where they are not involved as member. Status of affiliation + conflict of interest to be declared when applying

'Affiliated entity' means any legal entity that is under the direct or indirect control of a participant, or under the same direct or indirect control as the participant, or that is directly or indirectly controlling a participant [art.2, H2020 Rules for participation]

Thematic topics: specific admissibility condition

The following **special admissibility condition** applies to the Thematic topics:

"The 16 Leaders of the CS2JU listed in Annex II to Regulation n° (EU) No 558/2014 and their affiliates <u>may not</u> apply to the Thematic topics"

Documentation

Final and Valid Call documents via the EC Funding and Tenders Portal

Open access to research data

The Open Research Data Pilot has been extended to cover all Horizon 2020 topics for which the submission is opened on 26 July 2016 or later. Projects funded under this topic will therefore by default provide open access to the research data they generate. except if they decide to opt-out under the conditions described in <u>Annex L</u> of the H2020 Work Programme. Projects can opt-out at any stage, that is both before and after the grant signature.

Note that the evaluation phase proposals will not be evaluated more favourably because they plan to open or share their data, and will not be penalised for opting out.

Open research data sharing applies to the data needed to validate the results presented in scientific publications. Additionally, projects can choose to make other data available open access and need to describe their approach in a Data Management Plan.

Projects need to create a Data Management Plan (DMP), except if they opt-out of making their research data open access. A first version of the DMP must be provided as an early deliverable within six months of the project and should be updated during the project as appropriate. The Commission already provides guidance documents, including a template for DMPs. See the <u>Online Manual</u>.

Eligibility of costs: costs related to data management and data sharing are eligible for reimbursement during the project duration.

The legal requirements for projects participating in this pilot are in the article 29.3 of the Model Grant Agreement.

8. Additional documents:

Clean Sky 2 Joint Technical Programme Clean Sky 2 JU Financial Rules Clean Sky 2 JU Regulation of Establishment H2020 Regulation of Establishment H2020 Rules for Participation H2020 Specific Programme

Additional documents

Download all documents (Exempt, Incl. the additional deca.)

Full and Formal Description of Topics (Annex of Work Plan) <u>an</u> Template for Part B.I of Proposal <u>an</u> Template for Part B.II of Proposal <u>an</u> Template for Part C of Proposal (Optional) <u>an</u>

Template for Part D of Proposal en

Guidence for optional Part C of proposals - European Structural and Investment Funds \underline{en}

A template for Part A is not provided here becuase Part A consists of on-line forms in the submission system

Mono-Beneficiary Model Grant Agreement for Partners <u>en</u> Multi-Beneficiary Model Grant Agreement for Partners <u>en</u>

Horizon 2020 Annotated Model Grant Agreement - Link to document en

Model Implimentation Agreement (2017) en

ITD / IADP Model Consortium Agreement en

The Templates for drafting proposals will also be available in the submission system (SEP).

CS2 Joint Technical Programme (for size reasons this very large doc can be downloaded separatly in section 8 under the topic conditions and documents tab)

Clean Sky 2 Joint Undertaking

9th Call for Proposals (CfP09): List and full description of Topics

Call Text

Important: For a valid application, only the Call documents published on the Participant Portal will be considered.

<u>Note</u>: Q&A Release nr. 1 already available via the Participant Portal !

The Call for Proposal 10 (CfP10)

10th Call for Proposal (CfP10) at a glance

- Call Opening Date
- Call Closure
- Evaluation Phase
- Q&A last publication*
- Technical sessions & Grant preparation
- Indicative Start date of activities

07 May 2019
Ago 2019 ^{**}
<mark>Sept 2019</mark> **
Usually 1 month before Call Closure**
<mark>~Q4 2019 – Q1 2020</mark> **
<mark>~Q4 2019</mark> **

*The Questions & Answers (Q&A) Period will open on the Call launch date via the via the <u>H2020 Funding & Tenders</u> <u>Opportunities Portal</u>. Questions received up until 05/07/2019 will be answered after analysis and published in the Q&A when appropriate. Several publications of Q/As are foreseen.

**Indicative

10th Call for Proposal at a glance

PART A: Call topics launched within the complementary

framework of IADP/ITD/TA

1. Overview of number of topics and total indicative funding value per SPD

SPD Area	No. of topics	Ind. topic Funding (in M€)					
IADP Large Passenger Aircraft	19	20.7					
IADP Regional Aircraft	3	1.35					
IADP Fast Rotorcraft	4	6.4					
ITD Airframe	18	12.925					
ITD Engines	2	2.350					
ITD Systems	13	10.32					
Small Air Transport related topics*	[2]	[1.10]					
ECO Design related topics*	[1]	[1.75]					
TOTAL	59	54.045					
*TA related topics are proposed and embedded in the following SPDs and as follows: AIR TD: 1 SAT topic, 0.48M€ ; SYS ITD: 1 SAT topic, 0.60M€ ; ENG ITD: 1 ECO topic, 1.75M€							

All the call documentation including the final list of topics and topic descriptions are available at this link

• Large Passenger Aircraft IADP

LPA – status 18/05/2019

Identification Code	Title	Type of Action	Value (Funding in M€)	Topic Leader
JTI-CS2-2019-CfP10-LPA- 01-72	Development of a distributed CFD platform for collaborative design	IA	0.6	Airbus
JTI-CS2-2019-CfP10-LPA- 01-73	Innovative Thrust Reverser Actuator System (ITRAS)	IA	0.9	Airbus
JTI-CS2-2019-CfP10-LPA- 01-74	UHBR Engine Studies for Aircraft Operations and Economics	IA	0.5	Airbus
JTI-CS2-2019-CfP10-LPA- 01-75	Advanced solutions for 2030+ UHBR Core Noise reduction	IA	2.5	Safran Aircraft Engines
JTI-CS2-2019-CfP10-LPA- 01-76	Supporting implementation of 2030+ UHBR low noise fan technology solutions through enhanced modeling capabilities	IA	1.4	Safran Aircraft Engines
JTI-CS2-2019-CfP10-LPA- 01-77	Advanced Pitch Control Mechanism TRL4 Demonstration	IA	3.5	Safran Aircraft Engines
JTI-CS2-2019-CfP10-LPA- 01-78	Innovative turbine cavity swirl control systems through Additive Manufacturing	RIA	0.9	GE Avio
JTI-CS2-2019-CfP10-LPA- 01-79	Development of multidisciplinary design tools for rapid concept design for aero engine components	IA	0.5	GKN
JTI-CS2-2019-CfP10-LPA- 01-80	Rear fuselage and empennage shape optimization including anti-icing technologies	RIA	1.5	Airbus
JTI-CS2-2019-CfP10-LPA- 01-81	Fiber reinforced thermoplastics manufacturing for stiffened, complex, double curved structures	IA	0.7	German Aerospace Center, DLR
01-82	Development of Thermoplastic press forming Tool for Advanced Rear End Closing Frame Prototype and Tooling 4.0 for Assembly and transportation of the Advanced Rear End Prototype.	IA	0.75	Aernnova
ITL CC2 2010 C(D10 L DA	Development and simulation of a forming process for	1 1 4	1 1 2	A

enterprise europe network 31

Eastness Support on Your Doorstep

LPA – status 18/05/2019

Identification Code	Title		Type of	Value (Funding in M€)	
JTI-CS2-2019-CfP10-LPA-	Development and simulation of a forming process for	IA	1.3	Aernnova	
01-83	LE HLFC wing outer skins				
JTI-CS2-2019-CfP10-LPA-	Development of a manufacturing process and a	IA	1.5	Fraunhofer	
01-84	manufacturing unit for production of a laser treated				
	titanium panel with a 3D printed substructure				
JTI-CS2-2019-CfP10-LPA-	Design and manufacturing of multi-functional Ice	IA	0.7	SONACA	
01-85	Protection System power feed/monitoring lines and				
	Shielding/High-lift electrical actuation system for a				
	HLFC Wing demonstrator				
JTI-CS2-2019-CfP10-LPA-	Develop and test Power Efficient Actuation Concepts	IA	0.9	Airbus	
01-86	for Separation Flow Control at large aerodynamic				
JTI-CS2-2019-CfP10-LPA-	Development of innovative welding systems for	IA	0.75	Aernnova	
02-30	structural joints of Thermoplastic matrix based			Composites	
	Composites			Illescas	
JTI-CS2-2019-CfP10-LPA-	Development of short fibre reinforced thermoplastic	IA	0.5	Fokker	
02-31	airframe clips and brackets using factory waste				
JTI-CS2-2019-CfP10-LPA-	Innovative miniaturized sensing device for large wave	RIA	0.8	Airbus	
	length spectrum reception capability as a tool for			Operations	
	quality control and aircraft maintenance				
JTI-CS2-2019-CFP10-LPA:	19 topics		20.70		

Eastness Support on Your Doorstep

• Regional Aircraft IADP

REG – status 18/05/2019

Identification Code	Title		Type of Action	Value (Funding in M€)
REG-01-18	field modification induced by flaws in loaded composite structures			Aircraft
JTI-CS2-2019-CFP10- REG-01-19	Innovative Noise Generation System for testing of Regional Cabin Interior Noise reduction	IA	0.55	Leonardo SpA - Aircraft
JTI-CS2-2019-CFP10- REG-02-06	SHMS and Dynamic fields sensors development	RIA	0.35	Airbus Defence & Space
JTI-CS2-2019-CFP10-REG	1.35			

• Fast Rotorcraft IADP

FRC – status 18/05/2019

Identification Code	Title		Type of	Value
			Action	(Funding in M€)
JTI-CS2-2019-CFP10-FRC-	nnovative kinematic analysis to incorporate multiple	RIA	0.50	Leonardo SpA
01-28	unctions within a movable surface			Helicopter
JTI-CS2-2019-CFP10-FRC-	Smart Active Inceptors System development for Tilt	IA	3.50	Leonardo SpA
01-29	Rotor application			Helicopter
JTI-CS2-2019-CFP10-FRC-	Multipurpose bench for Tiltrotor equipment	IA	0.80	Leonardo SpA
01-30	unctional test			Helicopter
JTI-CS2-2019-CFP10-FRC-	Engine exhaust wake flow regulator for Tilt Rotor	IA	1.60	Leonardo SpA
01-31				Helicopter
JTI-CS2-2019-CFP10-FRC:	1 topics		6.40	

• ITD Airframe

AIR – status 18/05/2019

Identification Code	ntification Code Title		Type of	Value
			Action	(Funding in M€
JTI-CS2-2019-CFP10-AIR- 01-41	Low speed handling quality and innovative engine integration of a new configuration aircraft	IA	0.70	Dassault Aviation
JTI-CS2-2019-CFP10-AIR- 01-42	Development of a methodology (test, measurement, analysis) to characterize the behaviour of composite structures under dynamic loading	RIA	0.50	Dassault Aviation
JTI-CS2-2019-CFP10-AIR- 01-43	Verification of advanced simplified HLFC concept with variable porosity	RIA	0.75	German Aerospace Center DLR
JTI-CS2-2019-CFP10-AIR- 01-44	Development of a methodology to optimize a wing composite panel with respect to tyre damage certification requirement	RIA	1.40	Dassault Aviation
JTI-CS2-2019-CFP10-AIR- 01-45	Coupon and element testing and manufacturing of test article for morphing technologies	IA	0.90	Fokker Aerostructures
JTI-CS2-2019-CFP10-AIR- 02-77	Increasing the efficiency of pulsed jet actuators for flow separation control.	RIA	0.70	Airbus
JTI-CS2-2019-CFP10-AIR- 02-78	Application of graphene based materials in aeronautical structures for de-icing, lightning strike protection, fire barrier and water absorption prevention purposes	IA	0.50	Leonardo SpA Aircraft
JTI-CS2-2019-CFP10-AIR- 02-79	Development of FEM fastener parametric/adaptable sizing tool including EMC impact, and manufacturing and EMC/LSP testing of demonstrators [SAT]	IA	0.475	Evektor
JTI-CS2-2019-CFP10-AIR- 02-80	Innovative flight data measurements to support the aerodynamic analysis of a compound helicopter demonstrator	IA	1.20	Airbus Helicopters

38

AIR – status 18/05/2019

Identification Code	Title		Type of	Value	
			Action	(Funding in M€)	
JTI-CS2-2019-CFP10-AIR-	Active Flow control on Tilt Rotor lifting surfaces	RIA	0.60	Leonardo SpA	
02-81				Helicopter	
JTI-CS2-2019-CFP10-AIR-	Innovative approaches for interior Noise Control for	RIA	0.65	Leonardo SpA	
02-82	Next Generation Civil Tilt Rotor			Helicopter	
JTI-CS2-2019-CFP10-AIR-	Innovative weight measurement system for Tilt Rotor	IA	0.80	Leonardo SpA	
02-83	application			Helicopter	
JTI-CS2-2019-CFP10-AIR-	Modular platform development for Tilt Rotor final	IA	1.00	Leonardo SpA	
02-84	assembly			Helicopter	
JTI-CS2-2019-CFP10-AIR-	Development of a multifunctional system for	IA	0.90	Leonardo SpA	
02-85	complex aerostructures assembly, assisted by neural			Aircraft	
	network softwares				
JTI-CS2-2019-CFP10-AIR-	Development of equipment for composite recycling	IA	0.80	Leonardo SpA	
02-86	process of uncured material			Aircraft	
JTI-CS2-2019-CFP10-AIR-	End of Life (EoL) for biomaterials	RIA	0.35	INVENT GmbH	
03-07					
JTI-CS2-2019-CFP10-AIR-	Disassembly and recycling of innovative structures	RIA	0.35	Aero-	
03-08	made of different Al-Li alloys			Magnesium	
JTI-CS2-2019-CFP10-AIR-	Scrapping of carbon reinforced thermoplastic	RIA	0.35	Netherlands	
03-09	materials			Aerospace	
				Centre	
JTI-CS2-2019-CFP10-AIR:	TI-CS2-2019-CFP10-AIR: 18 topics				

NΡ

39

erprise ope work

Business Support on Your Doorstep

• ITD Engines

23/05/19

ENG – status 18/05/2019

Identification Code		Title		Type of	
	1				(Funding in M€)
JTI-CS2-2019-CfP10-	Low NO	Dx / Low soot injection system design for	RIA	0.6	Safran
ENG-01-43	spinning	g combustion technology			Helicopter
					Engines
JTI-CS2-2019-CfP10-	Revalor	isation of Recycled Carbon Fibers and CFRP	IA	1.75	Fraunhofer
ENG-04-08	prepara	tion through Eco design [ECO]			
JTI-CS2-2019-CFP10-EN	G: 2 topic	S		2.35	

• ITD Systems

SYS – status 18/05/2019

Identification Code	Title		Type of	Value
			Action	(Funding in M€)
JTI-CS2-2019-CfP10-SYS-	Enhanced digital georeferenced data models for	IA	1.00	Thales
01-15	cockpit use			
JTI-CS2-2019-CfP10-SYS-	Innovative processing for flight practices	IA	0.60	Thales
01-16	improvement			
JTI-CS2-2019-CfP10-SYS-	New Efficient production methods for 94 GHz (W-	IA	0.50	SAAB
01-17	band) waveguide antennas			
JTI-CS2-2019-CfP10-SYS-	Low-profile/drag electronically steerable antennas	IA	1.40	Thales
01-18	for In-Flight Connectivity			
JTI-CS2-2019-CfP10-SYS-	VOC filtration device for Inerting System	IA	0.90	Zodiac
01-19				Aerospace
JTI-CS2-2019-CfP10-SYS-	Innovative high flow rate constant pressure valve for	IA	0.70	Diehl Aviation
01-20	inert gas discharge from pressurized vessels			
JTI-CS2-2019-CfP10-SYS-	Grey Water Container with Reduced Biofilm Growth	IA	0.70	Diehl Aviation
01-21				
JTI-CS2-2019-CfP10-SYS-	Automatic Haptic System Test Bench for Active	IA	0.70	Safran
02-58	Inceptors			

Eastness Support on Your Doorstep

43

SYS – status 18/05/2019

Identification Code		Title		Type of	Value
			Action		(Funding in M€)
02-59	hybridi	zation			
JTI-CS2-2019-CfP10-SYS- 02-60	archite	a Digital Twin ECS and thermal management cture models : Improvement of MODELICA s and usage of Deep Learning technics	0.60	Liebherr	
JTI-CS2-2019-CfP10-SYS- 02-61		Cycle System - Heat Exchanger performance odelization with different new low GWP rants	RIA	1.20	Liebherr
JTI-CS2-2019-CfP10-SYS- 03-23		-Mechanical Landing Gear system integration all Aircraft [SAT]	IA	0.60	Piaggio Aero
JTI-CS2-2019-CfP10-SYS- 03-24	Carbide	Semiconductor Device module using Silicon e devices for a relatively high-frequency, circa aircraft motor drive applications	IA	0.62	University of Nottingham
JTI-CS2-2019-CFP10-SYS: 13 topics					

• Thematic topics

THT – status 18/05/2019

Identification Code	Title	Type of	Value
		Action	(Funding in M€)
JTI-CS2-2019-CFP10-THT-07	Ultra-High Aspect ratio wings	RIA	2.00
JTI-CS2-2019-CFP10-THT-08	Experimental and numerical noise assessment of	RIA	2.00
	distributed propulsion configurations		
JTI-CS2-2019-CFP10-THT-09	Disruptive Active Flow Control for aircraft engine	RIA	1.50
	applications		
JTI-CS2-2019-CFP10-THT-10	Non-intrusive, seedless measurement system:	RIA	1.50
	design, development, and testing		

