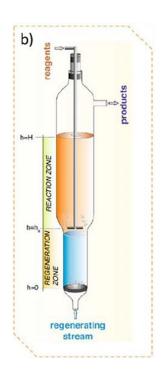


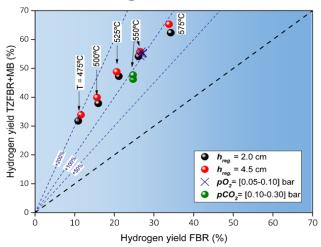
Miguel Menendez University of Zaragoza

E-mail: qtmiguel@unizar.es

Description of the Organization


- Catalysis, molecular separations and Reaction Engineering Group is a research group from University of Zaragoza focused in the development of new processes, catalysts and membranes.
- Some research áreas in our group include
 - Fluidized bed reactors
 - Membrane reactors
 - New membrane materials
 - New catalysts

Description of your research interest


TWO ZONE FLUIDIZED BED REACTOR

- > Two zones created by two feeds
 - reducing feed at medium height
 - oxidizing feed at the bottom
- Upper zone: reaction
- ➤ Lower zone: oxidation/regeneration
- ➤ Fluidized bed → mixing of solid
- Applications:
 - selective oxidations
 - continuous regeneration

Examples of applications

- Steam reforming of methane
- Dry (CO₂) reforming of methane
- Steam reforming of glycerol
- TZFBR+ H₂ selective membranes

Comparison of hydrogen yield from DMR of biogas, using FBR or TZFBR+MB reactor configurations

Project Idea

Please indicate relevant Horizon Cluster 5 project ideas

Please add TITLE of the PROJECT IDEA: multizone fluidized bed reactor

- Objectives:
 - To make in a single reactor the desired reaction and the catalyst regeneration
 - To produce hydrogen from renewable sources (e.g. residues)
- Expected results
 - Counteract catalyst deactivation
 - More compact reactor and steady state operation
 - Lower CAPEX and OPEX

Project Idea: multizone fluidized bed reactor

Potential calls to apply:

- C5-D3-RES-09-2021: Carbon fixation and gas cleaning technologies for biogenic flue gases from heating and CHP
- C5-D3-RES-11-2021: Carbon-negative sustainable biofuel production
- C5-D3-RES-20-2021: Innovative biomethane production as an energy carrier and a fuel
- C5-D3-RES-34-2022: Efficient and low-emission technologies for industrial use of combustion and gasification systems from low-value biogenic residues and wastes
- C5-D3-RES-54-2021: Renewable energy incorporation in manufacturing/chemical/ petro-chemical industry
- C5-D3-RES-59-2022: Coupling synthesis of complex renewable energy carriers with surplus renewable electricity

Miguel Menendez

University of Zaragoza

Department of Chemical Engineering
Catalysis, molecular separations and
reaction engineering group (CREG)

Spain

Tel: +34 976761152

E-mail: qtmiguel@unizar.es

Web. http://creg.unizar.es

