Horizon Europe Cluster 4

International Networking Event

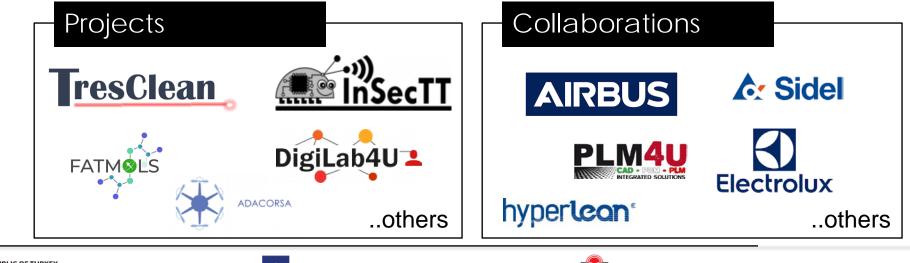
This project is co-financed by the European Union and the Republic of Turkey Bu proje Avrupa Birliği ve Türkiye Cumhuriyeti tarafından finanse edilmektedir

UNIVERSITÀ DI PARMA

Department of Engineering and Architecture

Dr. Claudio Favi, Prof. Alessandro Pirondi, Dr. Adrian H.A. Lutey, Dr. Fabrizio Moroni, Prof. Luca Romoli, Prof.ssa Emanuela Cerri, Prof. Daniel Milanese

Email:claudio.favi@unipr.it



Description of the Organization

- UNIPR is a non-profit public higher-education institution located in the urban setting of the small city of Parma
- The Department of Engineering and Architecture (DIA) of UNIPR is involved in several research projects and collaborations with industrial partners

TÜBİTAK

Green flexible and advanced manufacturing

HORIZON-CL4-2022-TWIN-TRANSITION-01-02: Products with complex functional surfaces

Goal

→ Development of surface topographies with fluid repellent and antibacterial properties over large areas (>500cm² for food industry, >5000cm² home appliance)

→ Lotus leaf effect

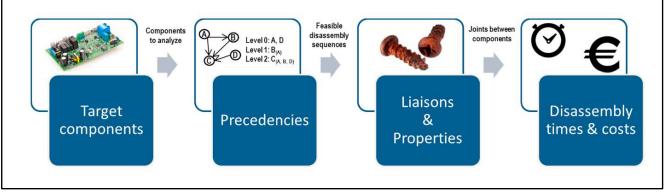
→ Adhesion of Escherichia coli

Method

- → Ultrashort pulse (USP) laser texturing to generate functionalized textures on stainless steel
- → Near-field interaction modeling to evaluate the behavior of bacterial cells in close proximity to a texture

Results

- → High throughput processing technologies for functional surfaces with an overall structuring rate of up to 2000 mm²/s
- → 99.8% Reduction of bacterial adhesion for specific bacteria types on textured surfaces

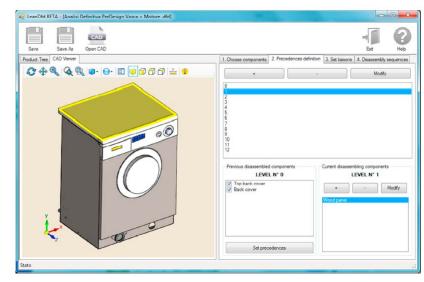


Advanced digital technologies for manufacturing

HORIZON-CL4-2022-TWIN-TRANSITION-01-07: Digital tools to support the engineering of a Circular Economy (Made in Europe Partnership) (RIA)

Goal

→ To provide a CAD-based software tool able to predict disassembly time, optimized sequence and tool list (including supply chain parameters)

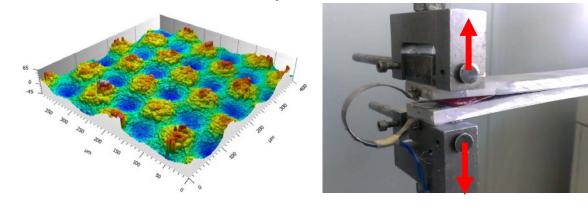


Method

- → To perform a new list of Circularity Indices for the evaluation of circular economies scenarios (Reuse, Reman, Repair) for target components in products
- → To develop a CAD-based software tool for DfD

Preliminary results

→ LeanDfD tool – It allows to analyse product disassembly and provide design feedback to engineers

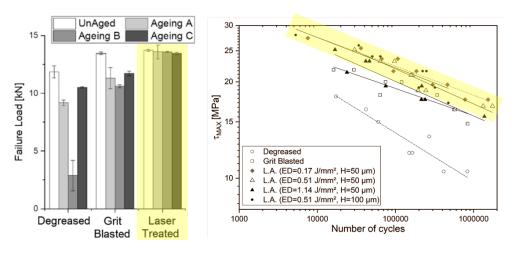

→ DfD DB – It collects a list of item (liaisons) used to perform assembly task and related disassembly time

Green and sustainable materials

HORIZON-CL4-2022-RESILIENCE-01-11: Advanced lightweight materials for energy efficient structures (RIA) HORIZON-CL4-2022-RESILIENCE-01-12: Functional multi-material components and structures (RIA)

Goal

→ Optimization of the laser surface treatment to promote the mechanical interlocking between adhesive and adherend in bonded joints

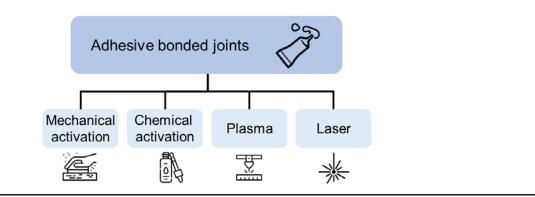


Method

- Characterization and prediction of surface morphology of laser treated surfaces
- → Experimental test campaign (static, fatigue and aged conditions)

Results

- → Static test: higher strength if compared to traditional surface pre-treatment
- → Fatigue Tests: longer life of laser treated joints
- → Better ageing resistance of laser treated joints

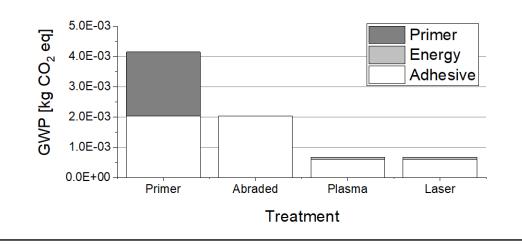


Green and sustainable materials

HORIZON-CL4-2022-RESILIENCE-01-11: Advanced lightweight materials for energy efficient structures (RIA) HORIZON-CL4-2022-RESILIENCE-01-12: Functional multi-material components and structures (RIA)

Goal

→ To analyze the environmental performance of adhesive bonded processes for material assembly with different surface activation processes (i.e., laser irradiation and plasma treatment)



Method

- → To perform an experimental test campaign (both static and dynamic)
- \rightarrow To perform an LCA analysis

Preliminary results

- → Tensile test (static) + Fatigue test (dynamic) campaigns: optimization of process parameter (i.e., laser) and mechanical characterization of joint performance (static strength and fatigue life)
- → LCA: Plasma and Laser exhibit approx. the same results (lowest impact compared with abraded and chemical activated joints)

Department of Engineering and Architecture

<u>Dr. Claudio Favi</u>, Prof. Alessandro Pirondi, Dr. Adrian H.A. Lutey, Dr. Fabrizio Moroni, Prof. Luca Romoli, Prof.ssa Emanuela Cerri, Prof. Daniel Milanese

Email:claudio.favi@unipr.it

